

February 1984 Revised May 2005

MM74HCT245 Octal 3-STATE Transceiver

General Description

The MM74HCT245 3-STATE bi-directional buffer utilizes advanced silicon-gate CMOS technology and is intended for two-way asynchronous communication between data buses. It has high drive current outputs which enable high speed operation even when driving large bus capacitances. This circuit possesses the low power consumption of CMOS circuitry, yet has speeds comparable to low power Schottky TTL circuits.

This device is TTL input compatible and can drive up to 15 LS-TTL loads, and all inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

The MM74HCT245 has one active low enable input (\overline{G}) , and a direction control (DIR). When the DIR input is HIGH, data flows from the A inputs to the B outputs. When DIR is LOW, data flows from B to A.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL input compatible
- 3-STATE outputs for connection to system busses
- High output drive current: 6 mA (min)
- High speed: 16 ns typical propagation delay
- Low power: 80 µA (74HCT Series)

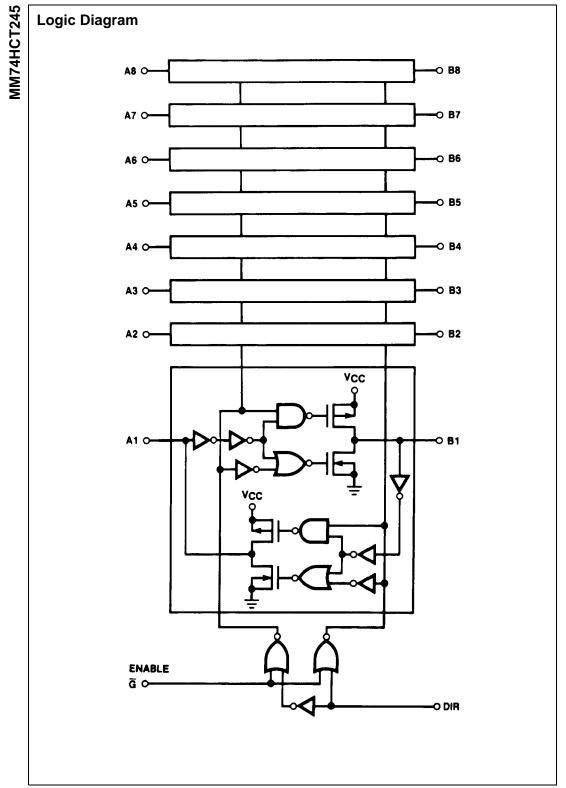
Ordering Code:

Order Number	Package Number	Package Description
MM74HCT245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT245N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

FNABLE VCC G B1 B2 B3 B4 B5 B6 B7 B8 20 19 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 9 10


Pin Assignments for DIP, SOIC, SOP and TSSOP

Truth Table

Control		Operation		
Inp	outs			
G	DIR	245		
L	L	B data to A bus		
L	Н	A data to B bus		
Н	Х	isolation		

- H = HIGH Leve
- L = LOW Level X = Irrelevant
- © 2005 Fairchild Semiconductor Corporation DS005366

Top View

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current,	±35 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW

S.O. Package only

Lead Temperature (T_L) (Soldering 10 seconds)

(Soldering 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns
Note 1: Absolute Maximum Ratings are those	values b	eyond whi	ch dam-

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –

12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

(VCC = 5V \pm 10%, unless otherwise specified.)

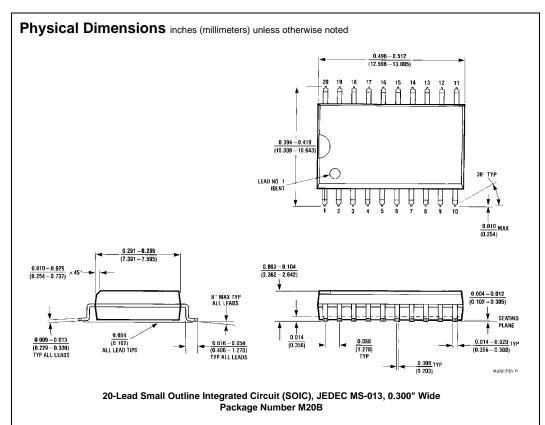
Symbol	Parameter	Conditions	TA	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	Units	
			Тур	Typ Guaranteed Limits				
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V	
	Input Voltage							
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V	
	Input Voltage							
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} = 20 \mu A$	V _{CC}	V _{CC} - 0.1	V _{CC} - 0.1	V _{CC} - 0.1	V	
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V	
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μА	
	Current	V_{IH} or V_{IL} , Pin 1 or 19						
l _{OZ}	Maximum 3-STATE	V _{OUT} = V _{CC} or GND		±0.5	±5.0	±10	μА	
	Output Leakage	$\overline{G} = V_{IH}$						
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		8	80	160	μА	
	Supply Current	$I_{OUT} = 0 \mu A$						
		V _{IN} = 2.4V or 0.5V (Note 4)	0.6	1.0	1.3	1.5	mA	

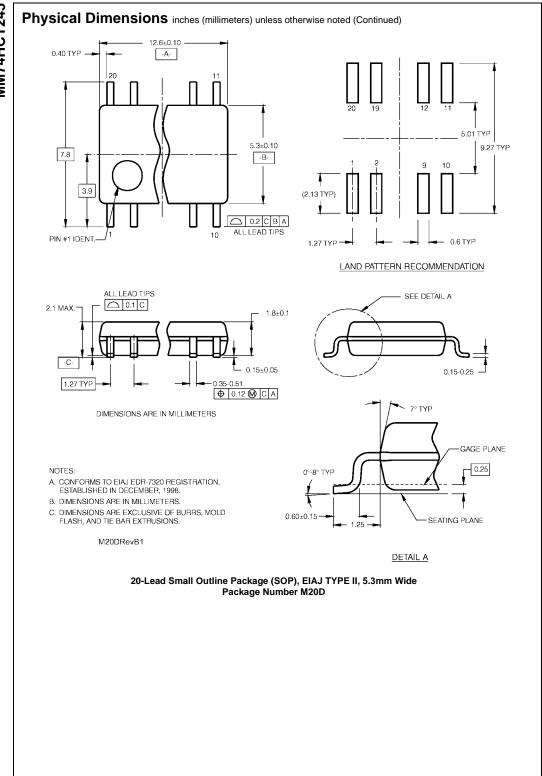
500 mW

Note 4: Measured per input. All other inputs at V_{CC} or ground.

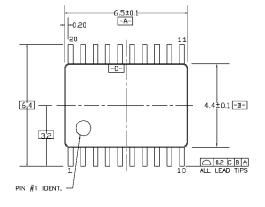
AC Electrical Characteristics

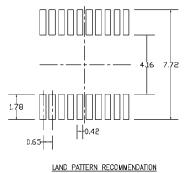
 $V_{CC} = 5.0V$, $t_r = t_f = 6$ ns, $T_A = 25$ °C (unless otherwise specified)

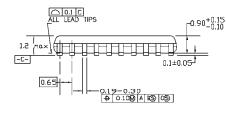

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 45 pF	16	20	ns
	Propagation Delay				
t _{PZL} , t _{PZH}	Maximum Output	C _L = 45 pF	29	40	ns
	Enable Time	$R_L = 1 k\Omega$			
t _{PLZ} , t _{PHZ}	Maximum Output	C _L = 5 pF	20	25	ns
	Disable Time	$R_L = 1 k\Omega$			


AC Electrical Characteristics

 V_{CC} = 5.0V \pm 10%, t_{r} = t_{f} = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	Units
			Тур	Typ Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Output	C _L = 50 pF	17	23	29	34	ns
	Propagation Delay	C _L = 150 pF	24	30	38	45	ns
t _{PZL}	Maximum Output	$R_L = 1 k\Omega$	31	42	53	63	ns
	Enable Time	C _L = 50 pF					
t _{PZH}	Maximum Output	$R_L = 1 k\Omega$	23	33	41	49	ns
	Enable Time	C _L = 50 pF					
t _{PHZ} , t _{PLZ}	Maximum Output	$R_L = 1 k\Omega$	21	30	38	45	ns
	Disable Time	C _L = 50 pF					
t _{THL} , t _{TLH}	Maximum Output	C _L = 50 pF	8	12	15	18	ns
	Rise and Fall Time						
C _{IN}	Maximum Input		10	15	15	15	pF
	Capacitance						
C _{OUT}	Maximum Output/Input		20	25	25	25	pF
	Capacitance						
C _{PD}	Power Dissipation	G = V _{CC} (Note 5)	7				pF
	Capacitance	$\overline{G} = GND$	100				pF


Note 5: C_{PD} determines the no load power consumption, $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.



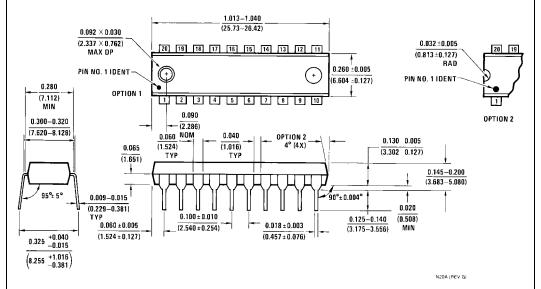
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

0.09-0.20^J R0.09min GAGE PLANE SEATING PLANE R0.09min


SEE DETAIL A

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com